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gure 1.6 Diagram showing a polypeptide
ain where the main chain atoms are
oresented as rigid peptide units, linked
rough the Cy atoms. Each unit has two
grees of freedom; it can rotate around two
nds, its Ce=C” bond and its N-C, bond. The
gle of rotation around the N-Cq, bond is
lled phi (¢) and that around the Co~C” bond
| (y). The conformation of the main chain
ms is therefore determined by the values of
=3¢ two angles for each amino acid.
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Figure 1.7 Ramachandran plots showing allowed

(@) combinations of the conformational angles phi and
psi defined in Figure 1.6. Since phi (¢) and psi (y)
refer to rotations of two rigid peptide units around
the same C, atom, most combinations produce steric
collisions either between atoms in different peptide
groups or between a peptide unit and the side chain
attached to C,. These combinations are therefore not
allowed. (a) Colored areas show sterically allowed
regions. The areas labeled «, B, and L correspond
approximately to conformational angles found for
the usual right-handed « helices, B strands, and left-
handed « helices, respectively. (b) Observed values
for all residue types except glycine. Each point
represents ¢ and y values for an amino acid residue in
a well-refined x-ray structure to high resolution. (¢)
Observed values for glycine. Notice that the values

—180 include combinations of ¢ and y that are not allowed
~180 0 +180 for other amino acids. (From J. Richardson, Adv. Prot.
Chem.34: 174-175, 1981.)
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1.2 The Polypeptide Backbone 5

@\ | 19.5“1 18.2°

FIGURE 1.2

The geometry of the peptide backbone, with a irans peptide
bond, showing all the atoms between two C* atoms of adja-
cent residues. The peptide bond is stippled. The dimensions
given are the averages observed crystallographically in
amino acids and small peptides. (G. N. Ramachandran et
al., Biochim. Biophys. Acta 359:298 -302, 1974.)
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When residue i + 1 is Pro, however, there is very little
dlﬂ'erence between the two forms:

cis (5.6)

and the trans formis only slightly favored, generally by a
ratio of about 4: 1. The peptide bond preceding a Pro
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FIGURE 5.6
The classical right-handed a-helix.
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FIGURE 5.8
Helical wheel representation of an a-helix. The pesitions of
the side chains are shown in projection down the helix axis.
In an ideal a-helix, there are 3.6 residues per complete
turn, or a rotation of 100° per residue. The helical wheel
consequently repeats after five turns of 18 residues; resi-
dues 19-21 are offset slightly here to make them visible.
In the amphipathic helix of the peptide shown, the hydro-
phobic residues are indicated in bold, and they can be seen
0 Tie solely on one side of the helix; the opposite side is
composed solely of polar residues. (From W. F. DeGrado et
al., |. Amer. Chem. Soc. 103:679-681, 1981.)
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Figure 2.5 Schematic illustrations of antiparallel § sheets. B sheets are the second
major element of secondary structure in proteins. The B strands are either all
antiparallel as in this figure or all parallel or mixed as illustrated in following figures.
(2) The extended conformation of a f strand. Side chains are shown as purple circles.
The orientation of the B strand is at right angles to those of (b) and (c). A B strand is
schematically illustrated as an arrow, from N to C terminus. (b) Schematic illustrafion
of the hydiogen bond pattern in an antiparallel p sheet. Main chain NH and O atoms
within a p sheet are hydrogen bonded to each other. (c¢) A ball-and-stick version of (b).
Oxygen atoms are red; nitrogen atoms are blue. The hydrogen atom in N-H...O is

white. The carbon atom in the main chain, C,, is black. Side chains are illustrated by ’ E E .
one purple atom. The orientation of the § strands is different from that in (a). (d) S Ao 8§ ra

[llustration of the pleat of a B sheet. Two antiparallel § strands are viewed from the
side of the B sheet. Note that the directions of the side chains, R (purple), follow the ﬁ“g"v ¢ WJ ‘g‘&“’ H'“‘

pleat, which is emphasized in yellow. | I’E""‘" ﬁf ﬂ“ Efg-- gﬁgﬂ“
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Figure 2.6 Parallel p sheet. (a) Schematic
diagram showing the hydrogen bond pattern in

N N N N a parallel B sheet. (b) Ball-and-stick version of
5, (a). The same color scheme is used as in Figure
Co Co Ca a 2.5¢. (¢) Schematic diagram illustrating the
/ / / pleat of a parallel §§ sheet.
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Figure 2.7 (a) [llustration of the twist of §
sheets. §§ strands are drawn as arrows from the
amino end to the carboxy end of the 3 strand in
this schematic drawing of the protein
thioredoxin from E. coli, the structure of which
was determined in the laboratory of Carl
Branden, Uppsala, Sweden, to 2.8 A resolution.
The mixed B sheet is viewed from one of its
ends. (Adapted from B. Furugren.) (b) The
hydrogen bonds between the [ strands in the
mixed B sheet of the same protein (page 18).
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Figure 4.8
Examples of different
types of open twisted
a/P structures. Both
schematic and
topological diagrams
are given. Arrows
denote strands of
sheet and rectangles
denote o helices.

(a) The FMN-binding
redox protein
flavodoxin. (b) The
enzyme adenylate
kinase, which
catalyzes the reaction
AMP + ATP = 2ADP.
The structure was
determined to 3.0 A
resolution in the
laboratory of Georg
Schulz in Heidelberg,
Germany. (c) The
ATP-binding domain
of the glycolytic
enzyme hexokinase,
which catalvzes the
phosphorylation of
glucose. The
structure was
determined to 2.8 A
resolution in the
laboratory of Tom
Steitz, Yale
University. (d) The
glycolytic enzyme
phosphoglycerate
mutase, which
catalyzes transfer of a
phosphoryl group
from carbon 3 to
carbon 2 in glycerate.
The structure was
determined to 2.5 A
resolution in the
laboratory of Herman
Watson, Bristol
University, UK.
(Adapted from J.
Richardson.)



